

    
      
          
            
  
ROS2 QNX Documentation


Distribution: Foxy


Guide



	License

	Building ROS2 Foxy for QNX
	Overview of the build process

	System requirements

	System setup

	Building steps





	Target Setup and Testing
	Setup the Target:

	Test the installation





	Setting up a Workspace for ROS2 & QNX

	Building a Docker Image for ROS2 & QNX Development
	Requirements

	Steps














            

          

      

      

    

  

    
      
          
            
  
License

Creative Commons Legal Code

CC0 1.0 Universal

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN “AS-IS” BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
HEREUNDER.

Statement of Purpose

The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an “owner”) of an original work of
authorship and/or a database (each, a “Work”).

Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works (“Commons”) that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.

For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the “Affirmer”), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.

1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights (“Copyright and
Related Rights”). Copyright and Related Rights include, but are not
limited to, the following:

a. the right to reproduce, adapt, distribute, perform, display,
communicate, and translate a Work;


	moral rights retained by the original author(s) and/or performer(s);




c. publicity and privacy rights pertaining to a person’s image or
likeness depicted in a Work;

d. rights protecting against unfair competition in regards to a Work,
subject to the limitations in paragraph 4(a), below;

e. rights protecting the extraction, dissemination, use and reuse of data
in a Work;

f. database rights (such as those arising under Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation
thereof, including any amended or successor version of such
directive); and

g. other similar, equivalent or corresponding rights throughout the
world based on applicable law or treaty, and any national
implementations thereof.

2. Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer’s Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the “Waiver”). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer’s heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer’s express Statement of Purpose.

3. Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer’s express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer’s Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
“License”). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer’s
express Statement of Purpose.


	Limitations and Disclaimers.




a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.

b. Affirmer offers the Work as-is and makes no representations or
warranties of any kind concerning the Work, express, implied,
statutory or otherwise, including without limitation warranties of
title, merchantability, fitness for a particular purpose, non
infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to
the greatest extent permissible under applicable law.

c. Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without
limitation any person’s Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary
consents, permissions or other rights required for any use of the
Work.

d. Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to
this CC0 or use of the Work.




            

          

      

      

    

  

    
      
          
            
  
Building ROS2 Foxy for QNX

Note: Use the menu at the bottom left corner of the page to select the distribution.


Table of Contents


	Overview of the build process


	System requirements


	System setup


	Set locale


	Add the ROS 2 apt repository


	Install development tools and ROS tools






	Building steps






The following instructions go over the steps for building ROS2 foxy for QNX including FastRTPS and CycloneDDS RMW implementations.


Overview of the build process

Starting with a QNX SDP7.1 installation along with the required cross compiled dependencies, the build process will cross compile ROS 2’s source code against SDP7.1 and the cross compiled dependencies.
Binaries will be generated for the two architectures below:


	aarch64le


	x86_64




The generated files can then be transferred to the required target and used. The following document will go over the steps needed to cross compile the dependencies and ROS 2.



System requirements

HOST:


	Ubuntu 20.04


	QNX SDP7.1




For instructions to install SDP7.1 please follow the link:
http://www.qnx.com/developers/docs/7.1/index.html#com.qnx.doc.qnxsdp.quickstart/topic/about.html

TARGET:


	A QNX supported architecture running QNX SDP7.1






System setup


Set locale

Make sure to set a locale that supports UTF-8.

The following is an example for setting locale.
However, it should be fine if you’re using a different UTF-8 supported locale.

sudo apt-get update && sudo apt-get install -y locales
sudo locale-gen en_US en_US.UTF-8
sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8







Add the ROS 2 apt repository

You will need to add the ROS 2 apt repository to your system.
Make sure the Ubuntu Universe repository [https://help.ubuntu.com/community/Repositories/Ubuntu] is enabled first by checking the output of this command.

$ apt-cache policy | grep universe
 500 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 Packages
     release v=20.04,o=Ubuntu,a=focal,n=focal,l=Ubuntu,c=universe,b=amd64





If you don’t see output like the above, then enable the Universe repository with these instructions.

sudo apt install software-properties-common
sudo add-apt-repository universe





Now add the ROS 2 apt repository to your system.
First authorize our GPG key with apt.

sudo apt update && sudo apt install curl gnupg lsb-release
sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key  -o /usr/share/keyrings/ros-archive-keyring.gpg





Then add the repository to your sources list.

echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null







Install development tools and ROS tools

sudo apt update && sudo apt install -y \
  build-essential \
  git \
  python3-colcon-common-extensions \
  python3-flake8 \
  python3-pip \
  python3-pytest-cov \
  python3-rosdep \
  python3-setuptools \
  python3-vcstool \
  wget

# install some pip packages needed for testing
python3 -m pip install -U \
  argcomplete \
  flake8-blind-except \
  flake8-builtins \
  flake8-class-newline \
  flake8-comprehensions \
  flake8-deprecated \
  flake8-docstrings \
  flake8-import-order \
  flake8-quotes \
  pytest-repeat \
  pytest-rerunfailures \
  pytest

 # Install additional tools needed for building the dependencies for QNX
 sudo apt update && sudo apt install -y \
   bc \
   subversion \
   autoconf \
   libtool-bin \
   libssl-dev \
   zlib1g-dev \
   rsync \
   rename

 python3 -m pip install -U \
   Cython \
   numpy \
   lark-parser

 # Optional: If CycloneDDS is needed then it has to be build for host first to use dssconf tool required when cross compiling
 sudo apt install -y bison
 cd ~/
 git clone -b iceoryx https://github.com/eclipse-cyclonedds/cyclonedds.git
 cd cyclonedds
 mkdir build
 cd build
 cmake ..
 cmake --build . --target ddsconf idlc
 export DDSCONF_EXE=$(find ~/cyclonedds -type f -name ddsconf)
 export IDLC_EXE=$(find ~/cyclonedds -type f -name idlc)





cd /opt && sudo wget https://cmake.org/files/v3.18/cmake-3.18.0-Linux-x86_64.sh
sudo mkdir /opt/cmake-3.18.0-Linux-x86_64
yes | sudo sh cmake-3.18.0-Linux-x86_64.sh --prefix=/opt/cmake-3.18.0-Linux-x86_64 --skip-license
sudo ln -s /opt/cmake-3.18.0-Linux-x86_64/bin/cmake /usr/local/bin/cmake








Building steps

1- From withing the directory ~/ros2_foxy, clone additional files necessary for building ROS 2 and the dependencies then merge them with your ROS 2 directory.

mkdir ~/ros2_foxy
cd ~/ros2_foxy
git clone -b foxy https://gitlab.com/qnx/frameworks/ros2/ros2_qnx.git /tmp/ros2
rsync -haz /tmp/ros2/* .
rm -rf /tmp/ros2





2- Import ROS 2 code and apply patches.

mkdir -p ~/ros2_foxy/src
cd ~/ros2_foxy
vcs import src < ros2.repos
./patch.sh





3- Import the required QNX build files for each dependency by importing QNX dependencies repositories.

mkdir -p src/qnx_deps
vcs import src/qnx_deps < qnx_deps.repos





4- Run a script to automatically embed <build_depend> in the packages that depends on qnx_deps.

./patch-pkgxml.py --path=src





5- Before building ROS 2, some packages will need to be ignored first. Which are as following.

./colcon-ignore.sh





6- Export CPU variable according to your target architecture:

Please note: If no CPU is set all architectures are going to be built.

options for CPU: aarch64, x86_64

export CPU=aarch64





7- Source qnxsdp-env.sh script.

. ~/qnx710/qnxsdp-env.sh





Optional: Add the sourcing command to the end of ~/.bashrc if you would like the environment to be set every time for you.

8- Build ROS 2.

./build-ros2.sh









            

          

      

      

    

  

    
      
          
            
  
Target Setup and Testing


Setup the Target:

1- ssh to your target or run the following commands on your target directly.

2- make sure libffi is included with your image otherwise copy it over from your sdp

scp ~/qnx710/target/qnx7/x86_64/usr/lib/libffi.so.6 root@<target_ip>:/usr/lib/
ln -s /usr/lib/libffi.so.6 /usr/lib/libffi.so





3- Download CA certificates bundle on your PC then copy it over to your target:

On your target:

mkdir -p /etc/curl





On your PC:

curl --time-cond cacert.pem https://curl.se/ca/cacert.pem
scp cacert.pem root@<target_ip_address>:/etc/curl/





4- Add the following line to end of your /etc/profile on target and restart or logout and back in for the change to take effect.

export CURL_CA_BUNDLE=/etc/curl/cacert.pem





5- If a /tmp directory does not exist, add one on your target. Please note that this will require having a writable / partition, otherwise you can create another partition and mount it on top of / or /tmp

mkdir /tmp





6- Update system time with ntpdate (on target). Please use the appropriate time server for your region. The following time server is for Canada, but others can be found at https://www.ntppool.org/zone.

ntpdate 0.ca.pool.ntp.org





7- Install pip on your target

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python3 get-pip.py





8- Install python dependencies on your target.

pip install -U \
colcon-common-extensions \
importlib-metadata \
importlib-resources \
lark-parser





9- create a directory for ROS2’s installation.

mkdir -p /opt/ros/foxy





10- Get the ip address of your target

ifconfig





11- Check the amount of space available on your target and make sure you have enough space to copy the files over.

df -h





12- Copy ROS 2 to your target.

Note: you will have to replace “your_target_architecture” with your target architecture (e.g: “aarch64le” or “x86_64).

On host:

cd ~/ros2_foxy/install/<your_target_arch>/
tar -czvf ros2_foxy.tar.gz *
scp ros2_foxy.tar.gz root@target_ip_address:/opt/ros/foxy/





On target:

cd /opt/ros/foxy
tar -xzvf ros2_foxy.tar.gz





All the necessary files to run ROS 2 are now on your target.

13- Add the following lines to the end of your /etc/profile file

export COLCON_CURRENT_PREFIX=/opt/ros/foxy
export PYTHONPATH=/opt/ros/foxy/usr/lib/python3.8/site-packages
. /opt/ros/foxy/local_setup.sh





14- Logout and login or reboot. On QNX, a reboot can be done using shutdown.



Test the installation

1- ssh to your target and on one terminal run the following.

ros2 run demo_nodes_cpp talker





2- On another terminal run the following.

ros2 run demo_nodes_py listener





You should see the demos running on both terminals if the installation went successful.





            

          

      

      

    

  

    
      
          
            
  
Setting up a Workspace for ROS2 & QNX

Preferable host OS: Ubuntu 20.04

1- Clone the template workspace:

git clone http://gitlab.com/qnx/frameworks/ros2/dev_ws.git





This workspace contains the necessary setup, toolchain file and build script to cross compile for QNX.

2- Add your packages inside dev_ws/src

3- Set the value of ROS2_HOST_INSTALLATION_PATH inside build.sh according to the location of ROS2 installation is on your pc

4- Run the build command:

./build.sh





5- On target create a new directory for your group of packages:

mkdir /opt/dev_ws





6- Copy your packages over to the new location

scp -r ~/dev_ws/install/x86_64/* <user_name>@<ip_address>:/opt/dev_ws





7- Add the following commands at the end of the file /etc/.profile on your target:

export COLCON_CURRENT_PREFIX=/opt/ros/foxy
. /opt/ros/foxy/local_setup.sh
export COLCON_CURRENT_PREFIX=/opt/dev_ws
. /opt/dev_ws/local_setup.sh





8- Log out and log in back into new a terminal

9- Run your newly installed packages.

ros2 run my_new_package my_new_package_executable








            

          

      

      

    

  

    
      
          
            
  
Building a Docker Image for ROS2 & QNX Development


Table of Contents


	Requirements


	Steps






Docker is a tool that can be used to easily create environments that are
reproducible and lightweight. In this tutorial we will use it to set up a
development environment for building ROS2 for QNX.


Requirements


	Docker-CE



	Can be setup on Ubuntu using Docker’s official convenience script:











curl https://get.docker.com | sh && sudo systemctl --now enable docker






	QNX SDP 7.1.0



	Official QNX SDP 7.1.0 install instructions [http://www.qnx.com/developers/docs/7.1/index.html#com.qnx.doc.qnxsdp.quickstart/topic/about.html]













Steps

1- Clone the Dockerfile.

git clone https://gitlab.com/qnx/frameworks/ros2/docker





2- Prepare the docker build context with the QNX SDP. If the SDP is located in
your home directory, run the following.

rsync -havz ~/qnx710 ./docker/





We use rsync -havz rather than a regular cp to preserve the symbolic
links inside the SDP. If this is not done, the size of the copied SDP will be
significantly larger.

3- Build the docker image with the included script.

cd docker
./docker-build-qnxros2-image.sh foxy





4- Run the image with the included script to create a container. This will open
an interactive terminal into the Docker container.

./docker-create-container.sh foxy





5- Inside of the container’s interactive terminal, set the CPU environment
variable to the target cpu architecture for the build of ROS2. For example:

export CPU=x86_64
# or
export CPU=aarch64
# or
unset CPU # Build for all supported architectures





6- Perform the rest of the operations displayed by the welcome message to build ROS2.

cd ros2_foxy
./build-ros2.sh









            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          ROS2 QNX Documentation
        


        		
          License
        


        		
          Building ROS2 Foxy for QNX
          
            		
              Overview of the build process
            


            		
              System requirements
            


            		
              System setup
              
                		
                  Set locale
                


                		
                  Add the ROS 2 apt repository
                


                		
                  Install development tools and ROS tools
                


              


            


            		
              Building steps
            


          


        


        		
          Target Setup and Testing
          
            		
              Setup the Target:
            


            		
              Test the installation
            


          


        


        		
          Setting up a Workspace for ROS2 & QNX
        


        		
          Building a Docker Image for ROS2 & QNX Development
          
            		
              Requirements
            


            		
              Steps
            


          


        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





_static/BlackBerry-QNX-logo-white.png





